Recurrence quantification analysis as a tool for nonlinear exploration of nonstationary cardiac signals.
نویسندگان
چکیده
The complexity, nonlinearity and nonstationarity of the cardiovascular system typically defy comprehensive and deterministic mathematical modeling, except from a statistical perspective. Living systems are governed by numerous, continuously changing, interacting variables in the presence of noise. Cardiovascular signals can be shown to be discontinuous alternations between deterministic trajectories and stochastic pauses (terminal dynamics). One promising approach for assessing such nondeterministic complexity is recurrence quantification analysis (RQA). As reviewed in this paper, strategies implementing quantification of recurrences have been successful in diagnosing changes in nonstationary cardiac signals not easily detected by traditional methods. It is concluded that recurrence quantification analysis is a powerful discriminatory tool which, when properly applied to cardiac signals, can provide objectivity regarding the degree of determinism characterizing the system, state changes, as well as degrees of complexity and/or randomness.
منابع مشابه
Dynamic characterization and predictability analysis of wind speed and wind power time series in Spain wind farm
The renewable energy resources such as wind power have recently attracted more researchers’ attention. It is mainly due to the aggressive energy consumption, high pollution and cost of fossil fuels. In this era, the future fluctuations of these time series should be predicted to increase the reliability of the power network. In this paper, the dynamic characteristics and short-term predictabili...
متن کاملبکارگیری منحنیهای بازگشتی به منظور تحلیل سیگنالهای نرخ ضربان قلب در افراد با تجربه مدیتیشن
The current study analyses the dynamics of the heart rate signals during specific psychological states in order to obtain a detailed understanding of the heart rate patterns during meditation. In the proposed approach, we used heart rate time series available in Physionet database. The dynamics of the signals are then analyzed before and during meditation by examining the recurrence quantificat...
متن کاملMonitoring Depth of Anesthesia by Nonlinear Correlation Measures
Background: Monitoring the depth of anesthesia (DOA) takes an important role for anesthetists in order avoiding undesirable reactions such as intraoperative awareness, prolonged recovery and increased risk of postoperative complications.The Central Nervous System (CNS) is the main target of anesthetic drugs, hence EEG signal processing during anesthesia is helpful for monitoring DOA. In order t...
متن کاملMachining Characteristics of Multiwall-CNT Reinforced Al/Al-Si Composites using Recurrence Quantification Analysis
Aluminium (Al)/Aluminium alloy composites are emerging as very promising materials, especially in the fields of aerospace and automotive for their various attractive and technically demanding properties. Discontinuously reinforced aluminium metal matrix composites with reinforcements as nanoparticles of ceramics in general and carbon nanotubes in particular have emerged as the forerunner for a ...
متن کاملLinear and nonlinear analysis of normal and CAD-affected heart rate signals
Coronary artery disease (CAD) is one of the dangerous cardiac disease, often may lead to sudden cardiac death. It is difficult to diagnose CAD by manual inspection of electrocardiogram (ECG) signals. To automate this detection task, in this study, we extracted the heart rate (HR) from the ECG signals and used them as base signal for further analysis. We then analyzed the HR signals of both norm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical engineering & physics
دوره 24 1 شماره
صفحات -
تاریخ انتشار 2002